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Mistake is too large to fix
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QuerySplit improve from two aspects
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Query Split Algorithm

Subquery Selection Algorithm

logical plan
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Inter result

First, try to avoid explosive join 
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Second, postpone explosive join 
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Associated with execution order
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Prefer executing small subquery
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Evaluation Setup: a real-world workload

Database Config

PostgreSQL

No parallelization 1000s Timeout
8GB effective cache
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QuerySplit speeds up end-to-end latency
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QuerySplit speeds up end-to-end latency
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Conclusion
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• Current re-optimization can be misled by the initial 
physical plan

• Two key ideas of  QuerySplit
• Query Split Algorithm produces non-explosive subuquery
• Subquery Selection Algorithm postpones the inevitable 

explosive join


