
Efficient Query Re-optimization
with Judicious Subquery Selections

Junyi Zhao, Huanchen Zhang, Yihan Gao

Tsinghua University

SIGMOD 2023

1

Relation A

Relation C

Relation B

2

Wrong CE leads to bad physical plan

A.Fk = C.Pk

B.Fk = C.Pk
A.Fk = B.Fk

Relation A

Relation C

Relation B

2

Wrong CE leads to bad physical plan

A.Fk = C.Pk

B.Fk = C.Pk
A.Fk = B.Fk

1000 rows

1000 rows

1000 rows

Wrong CE leads to bad physical plan

1000 rows
1 row

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

1000 rows1000 rows

3

Wrong CE leads to bad physical plan

1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

1000 rows1000 rows

3

1 row

Wrong CE leads to bad physical plan

100 rows 1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

1000 rows1000 rows

4

Wrong CE leads to bad physical plan

100 rows 1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

1000 rows1000 rows

4

Re-optimization fixes mistakes

1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

1000 rows1000 rows

5

1 row

Re-optimization fixes mistakes

1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

STOP

1000 rows1000 rows

5

1 row ?

Re-optimization fixes mistakes

Check this

1000 rows1 row ?

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

STOP

1000 rows1000 rows

5

Re-optimization fixes mistakes

100 rows

Check this

1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

STOP

1000 rows1000 rows

6

Re-optimization fixes mistakes

Re-optimization
happens

100 rows

Check this

1000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

STOP

1000 rows1000 rows

6

Re-optimization fixes mistakes

Inter ResultRelation C

1000 rows 100 rows

Hash Join

7

Mistake is too large to fix

8

Mistake is too large to fix

Check this

1000 rows1 row ?

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

STOP

8

Mistake is too large to fix

Check this

1000 rows10000 rows

Relation A

Relation C

Relation B

Hash Join

Nested-loop Join

STOP

9

Mistake is too large to fix

Relation CInter Result

10000 rows 1000 rows

Hash Join

10

Mistake is too large to fix

Re-optimization:
worked but useless

Relation CInter Result

10000 rows 1000 rows

Hash Join

10

Relation A Relation B

Hash Join Relation C

Avoid such explosive join

11

Hash Join

Relation A Relation B

Hash Join Relation C

explosive

Avoid such explosive join

11

Hash Join

Relation A Relation B

Relation C

Switch the order

Avoid such explosive join

11

Hash Join
explosive

Hash Join

Avoid such explosive join

Relation A Relation C

Hash Join Relation B

12

Hash Join

Avoid such explosive join

Relation A Relation C

Hash Join Relation B

100 rows << 10000

12

Hash Join

Current re-optimization cannot avoid this

Relation A

Relation C

Relation B

Nested-loop Join

13

STOP

Hash Join

Relation A

Relation C

Relation B

Nested-loop Join

STOP
join reorder
opportunity lost

Current re-optimization cannot avoid this

13

Hash Join

QuerySplit improve from two aspects

14

Query Split Algorithm

Subquery Selection Algorithm

logical plan

postpone explosive join

produce non-explosive
subqueries

Rel. A Rel. B

Hash Join

First, try to avoid explosive join

15

Rel. B Rel. C

Hash Join

Enumeration Space
Rel. A Rel. C

Hash Join

explosive

First, try to avoid explosive join

16

Rel. B Rel. C

Hash Join

Removed Enumeration Space

Rel. A Rel. C

Hash Join

Query Split Algorithm avoids explosive join in advance

Subquery 1 Subquery 2

Fk-Pk join constrains the result size

R1

R2

R3

R4

…

R1.Fk2=R2.Pk

R1.Fk3=R3.Pk

R1.Fk4=R4.Pk

17

Relation A

Relation C

Relation B

A.Fk = C.Pk

B.Fk = C.Pk
A.Fk = B.Fk

18

First, try to avoid explosive join

Relation A

Relation C

Relation B

18

A.Fk = C.Pk

B.Fk = C.Pk
A.Fk = B.Fk

First, try to avoid explosive join

Relation A

Relation C

Relation B

19

FK Center

First, try to avoid explosive join

Relation A

Relation C

Relation B

Execute first

19

First, try to avoid explosive join

Relation A Relation C

Hash Join

20

100 rows << 10000

First, try to avoid explosive join

Inter
result

Relation B

21

First, try to avoid explosive join

Relation A Relation C

Hash Join

Hash Join

Relation B

22

Inter result

First, try to avoid explosive join

A join B is avoided

Second, postpone explosive join

explosive
join

join A join B

explosive
join

join A join B

Subquery Selection Algorithm delays explosive join
23

Performance

Associated with execution order

Relation A

Relation C

Relation B

Why execute first ?

24

Prefer executing small subquery

Relation A Relation C

Hash Join

Relation B Relation C

Hash Join

25

execution time: y1

output rows: x1

execution time: y2

output rows: x2

Prefer executing small subquery

Relation A Relation C

Hash Join

execution time: y1

Relation B Relation C

Hash Join

output rows: x1

x1 < x2

y1 < y2 25

execution time: y2

output rows: x2

Prefer executing small subquery

Relation A Relation C

Hash Join

Relation B Relation C

Hash Join

x1 < x2

y1 > y2
?

26

execution time: y1

output rows: x1

execution time: y2

output rows: x2

Prefer executing small subquery

Relation A Relation C

Hash Join

Relation B Relation C

Hash Join

x1 < x2

y1 > y2

Future?
26Current?

execution time: y1

output rows: x1

execution time: y2

output rows: x2

Prefer executing small subquery

Relation A Relation C

Hash Join

Relation B Relation C

Hash Join

27

f(x1, y1) ? f(x2, y2)

execution time: y1

output rows: x1

execution time: y2

output rows: x2

Prefer executing small subquery

Relation A Relation C

Hash Join

f(x1, y1) < f(x2, y2)

Relation B Relation C

Hash Join

27

execution time: y1

output rows: x1

execution time: y2

output rows: x2

Prefer executing small subquery

x

log(x) * y

sqrt(x) * y

x * y

y

28execution time: y
output rows: x

Evaluation Setup: a real-world workload

29

Workload
JOB (main)
TPC-H

DSB

Evaluation Setup: a real-world workload

29

System Config
Windows 10
128 GB Memory

Workload
JOB (main)
TPC-H

DSB

Evaluation Setup: a real-world workload

Database Config

PostgreSQL

No parallelization 1000s Timeout
8GB effective cache

29

System Config
Windows 10
128 GB Memory

Workload
JOB (main)
TPC-H

DSB

Best Implementation for QuerySplit

FK-Center

A
C

B

D

FK-Center vs. other 2 strategies

30

Best Implementation for QuerySplit

FK-Center PK-Center

A
C

B

D

A
C

B

D

FK-Center vs. other 2 strategies

30

Best Implementation for QuerySplit

FK-Center PK-Center

A
C

B

D

A
C

B

D

MinSubquery

A
C

B

D

FK-Center vs. other 2 strategies

30

Best Implementation for QuerySplit

FK-Center PK-Center MinSubquery

421s

327s

328s

295s

348s

378s

349s

339s

350s

407s

463s

428s

418s

427s

474s

31

 = x

 = log(x) * y

 = sqrt(x) * y

 = x * y

 = y

Best Implementation for QuerySplit

31

FK-Center PK-Center MinSubquery

421s

327s

328s

295s

348s

378s

349s

339s

350s

407s

463s

428s

418s

427s

474s

 = x

 = log(x) * y

 = sqrt(x) * y

 = x * y

 = y
Best

QuerySplit speeds up end-to-end latency

QuerySplit Optimal

200

0

400

600

800

1000

Re-optimization

No index With index

Pessimistic CE NeuroCard PostgreSQL

32

Pessimistic CE NeuroCard PostgreSQL

QuerySplit speeds up end-to-end latency

200

0

400

600

800

1000
No index With index

Only 4% diff

QuerySplit Optimal Re-optimization

32

Conclusion

33

• Current re-optimization can be misled by the initial
physical plan

• Two key ideas of QuerySplit
• Query Split Algorithm produces non-explosive subuquery
• Subquery Selection Algorithm postpones the inevitable

explosive join

